文章编号: 0258-7025(2009)Supplement 2-0125-04

基于大芯径多模光纤模式干涉的光纤折射率测量

王凯军1,2 张建中1 彭石军1 高麒麟1 孙伟民1 苑立波1 彭刚定3

(¹哈尔滨工程大学物理系,黑龙江哈尔滨 150001;²中南林业科技大学理学院,湖南 长沙 410004 ³新南威尔士大学电器工程系,悉尼 澳大利亚 2052

摘要 开展了利用大芯径多模光纤(MMF)实现折射率测量的理论分析仿真以及实验研究。方法是将包层/纤芯 半径为 62.5/52.5 μm 的多模光纤通过单模光纤接入光纤系统,实现单模-多模-单模(SMS)光纤结构,利用该结构 对周围折射率的敏感性实现折射率测量。解调借助于宽带放大自发辐射(ASE)光源和光谱分析仪(OSA)实现。 给出了影响折射率测量精度的因素,提出了借助于氢氟酸(HF)腐蚀实现折射率灵敏度的调节方法。实验结果证 实了该方法的有效性。

关键词 测量;折射率测量;光纤光学;光纤传感;大芯径多模光纤 中图分类号 O436 **文献标识码** A **doi**: 10.3788/CJL200936s2.0125

Refractometry Based on Multimode Optic Fiber with Large Core

Wang Kaijun^{1,2} Zhang Jianzhong¹ Peng Shijun¹ Gao Qili¹ Sun Weimin¹ Yuan Libo¹ Peng Gangding³

¹ Department of Physics, Harbin Engineering University, Harbin, Heilongjiang 150001, China

 2 School of Sciences, Centra South University of Forestry and Technology, Changsha, Hunan 410004, China

 3 Department of Electrical Engineering, University of New South Wales, Sydney 2502, Australia

Abstract Refractometry based on multimode optical fiber with large core is presented. The multimode fiber (MMF) with the cladding/core radius 62.5/50 μ m is connected with normal single mode fiber, which composes a single-multi-single (SMS) mode fiber structure. The structure is sensitive to the surrounding refractive index and is used as a refractometry. The demoducation system is made of the broadband amplified spontaneous emission (ASE) source and optical spectral analysis (OSA). A simple theoretical analysis of the refractometry is given and a HF corrosion method is proposed to enhance the performance of the refractometry. Experimental results prove the feasibility of the refractometry.

Key words measurement; refractometry; fiber optics; optical fiber sensor; multimode fiber with large core

1 引 言

光纤传感器发展迅速,传感参量包括应变、温度 和折射率等。其中折射率测量是生物领域重要参数,故受到了广泛关注。目前研究较多的折射率光 纤测量方法有基于长周期光纤光栅^[1,2]和倾斜光纤 光栅^[3],这些方法需要较为昂贵的制作设备(紫外激 光器和相位掩模板)和解调仪器[光谱分析仪 (OSA)]。光纤表面镀金属膜产生表面等离子体 波^[4]可以实现高精度的折射率传感,但该方法同样 需要高精度的制作工艺,制作成本较高。近期,基于 单模-多模-单模(SMS)光纤结构受到广泛关 注^[5~9],被用来实现各种传感,包括温度和应变等。 同时文献[9]开展了该光纤结构实现折射率传感仿 真计算,仿真计算时多模光纤(MMF)为没有包层只 有芯的结构,其极大地限定了该结构的动态范围。 本文开展了基于大芯径多模光纤实现折射率测量的

基金项目:黑龙江省留学基金(LC08C02)和哈尔滨科技基金(2007RFLXG007)资助课题。

作者简介: 王凯军(1975—),男,学士,实验师,主要从事光纤传感技术方面的研究。E-mail: wangkj. csfu@126. com

导师简介:张建中(1978—),男,博士,副教授,硕士生导师,主要从事光纤智能结构方面的研究。

光

36 卷

实验研究。借助单模光纤将光引入一段大芯径多模 光纤,在多模光纤内激励起多个传播模式,在多模光 纤的另外一端再通过单模光纤将光引出。大芯径多 模光纤区为传感区。解调可以通过强度型和光谱型 两种方案来实现。其中多模光纤具有包层结构,借 助 HF 酸腐蚀的方法改变大芯径多模光纤包层的厚 度,可以实现传感灵敏度和动态范围的调节。

2 大芯径多模光纤折射率测量方案

折射率测试方案如图1所示。借助单模光纤将 光源光引入一段大芯径多模光纤,再通过单模光纤 将光引出,其中多模光纤部分是传感区,通过固定器 对其固定,可以用来实现折射率测量。光源和探测 器可以是宽带放大自发辐射(ASE)光源和光谱分析 仪,也可以是激光二极管(LD)和光电探测器(PD)。 为了展示两种解调方案的可行性,实验中选用宽带 ASE 光源和光谱分析仪进行了实验研究。当光由 单模光纤引入到多模光纤内后,将激励起多个模式。 根据弱导和线偏振模近似理论^[5]可知,引入单模光 纤内的 LPu 模式传输到达多模光纤时,将在多模光 纤内激励起多个线偏振模式 LPo,每一种模式的耦 合效率可以通过单模多模光纤端面模场重叠积分来 计算,这些激励起的模式再次耦合到引出单模光纤 时可以用同样的方法计算耦合效率。最后所得到的 透射谱由这些耦合回引出单模光纤的多个模式干涉 共同决定。由于多模光纤的数值孔径大于单模光 纤,故当光由单模光纤向多模光纤耦合时,损耗可以 忽略。图 2 是利用光束传播法(BMP)得到的光由 单模光纤向多模光纤耦合过程,光功率基本没有损 耗[图2(c)]。而多模光纤中激励起的多个线偏振 模式 LP₀,再次耦合回到引出光纤时,耦合将会引入 一定的损耗。但当多模光纤中的多个模式在到达多 模光纤的右端面时,如果各个模式形成干涉加强,耦 合到单模光纤中的光强达到极大值,相反,如果是干 涉减弱,耦合到单模光纤内的光将极其微弱。图2 (b)是监测整个单模-多模-单模光纤(SMSF)中心 半径为5 µm 的圆柱中的光功率变化情况,可以看 出光功率的大小起伏变化。如果选取能量大的位置 接引出单模光纤,整个结构的传输损耗将极低,相反 则会引入较大的传输损耗。由于色散原因,不同波 长的光波具有不同的传播常数,传输损耗将会不同, 故当宽谱光通过该结构时将会产生滤波效应。当多 模光纤周围折射发生变化时,将影响到多模光纤内 模式的传输常数和模场分布,故该结构可以感知外 界折射率变化。多模光纤的包层越薄,该结构中模 式受到外界折射率影响越强。极限情况是没有包 层,即所测的物质作为包层,此时该折射率测量越加 灵敏。但此时测量的折射率范围不可能超过多模光 纤芯的折射率,因为此时原来多模光纤内的传输模 式将变为辐射模式。仿真计算中多模光纤的参数如 下:纤芯和包层直径分别为 105 µm 和 125 µm; 纤 芯和包层折射率分别为1.4574和1.4420;忽略材料 吸收损耗,光波长选取1550 nm。

图 2 单模-多模-单模光纤结构透射仿真。(a) 光场分布;(b) 纤芯光强随位置变化;(c) 整体光纤光强随位置变化 Fig. 2 Transmission simulation of SMSF structure. (a) Optical field in fiber; (b) the change of light intensity in optical fiber core; (c) light intensity in optical fiber

3 大芯径多模光纤折射率测量及讨论 在室温下(20℃),将单模-多模-单模光纤结构 (多模光纤长 4.8 cm)拉直固定(如图 1 所示)。利用ASE和光谱分析仪来观察透射光谱,光谱如图 3 中实线所示,可以看到在波长 1545 nm 位置光强极弱。这表明多模光纤内各个模式通过该结构后干涉 相消。利用不同浓度蔗糖溶液进行测量(蔗糖溶液的浓度和折射率关系在表 1 中给出),发现光谱变化微小。当直接利用该结构测量折射率时,灵敏度极低,基本不可用。为了提高灵敏度利用 HF 酸将该 结构进行了腐蚀,图 3 中分别给出了多模光纤没有 被腐蚀、腐蚀 4 min 和 8 min 后的光谱,透射光谱的 形状发生了变化。实验中所用 HF 酸的腐蚀速率约 为 1.6 µm/min。

表1 蔗糖溶液浓度和折射率关系

 Table 1 Relationship between the concentration and the refractive index of the liquid with sugar

ω (sugar liquid) /%	Refractive index
0	1.330
5	1.344
10	1.350
15	1.360
20	1.366
25	1.375
30	1 383

Wavelength /nm

图 3 多模光纤被 HF 腐蚀后的透射光谱

Fig. 3 Transmission spectra of MMF corroded by HF

图 4 给出了腐蚀 12 min 后进行折射率测量的 结果。由图 4(a)可以看出,透射谱的波谷位置随着 折射率增加而红移,两者关系在图 4(b)中给出。同 时可以观察到随着折射率增加某一特性波长的光波 的透射功率也可以用来实现折射率测量,图 4(c)给 出了波长 1540 nm 的透射光功率与折射率变化的 关系。图 4(b)和图 4(c)表征着两种不同的解调方 式,分别是基于宽谱光源的光谱解调法和基于单波 长激光的强度解调法。并且测试腐蚀 4 min,8 min 的传感结构折射率响应,在和图 4(b)相同折射率变 化范围内,波谷的波长漂移相对于图 4(b)中所示的 7 nm 小得多,分别为 0.2 nm 和 2 nm。这表明折射 率测量灵敏度随着腐蚀时间而提高。

图 4 (a)腐蚀 12 min 多模光纤在不同折射率下的透射谱;(b)透射谱中波谷位置与所测折射率关系; (c)波长 1540 nm 的光波透射强度与所测折射率关系

Fig. 4 (a) Transmission spectra of MMF corroded by HF for 12 mins; (b) relationship between the dip-wavelength of the transmission spectra and the refractive index of sugar liquid; (c) relationship between the light intensity of 1540 nm and the refractive index of sugar liquid 值得指出的是,大芯径多模光纤具有一定厚度 的包层虽然会降低光波和外界折射率测量区的相互 作用,从而降低折射率传感灵敏度,但是有一定厚度 包层的多模光纤结构将有助于将折射率测量的动态 范围扩大到大于多模光纤纤芯的折射率。借助 HF 酸腐蚀方法选择适当的包层厚度,可以同时满足折 射率灵敏度和更大折射率测量范围。该工作正在进 行中。

还需要指出的是,基于单模-多模-单模光纤结构的透射谱还会随着环境温度和应力而改变,我们 对没有腐蚀的该结构的应变和温度响应进行了测试,分别为-2.2 pm/με和13 pm/℃。在应用时还 应当避免该结构产生弯曲,由于模式转换和泄 漏^[10],弯曲将导致较为剧烈的光谱变化。

4 结 论

开展了一种基于大芯径多模光纤的折射率传感 器研究,提出了光谱法和强度法两种解调方案。同 时提出了借助 HF 酸腐蚀的方法提高折射率灵敏度 的方案,实验结果证明了该方案的有效性。该方案 是一种即简单又成本低的折射率传感方案,有望被 广泛应用到实际折射率测量中。

参考文献

1 Vikram Bhatia, Ashish M. Vengsarkar. Optical fiber long-period

grating sensors[J]. Opt. Lett., 1996, 21(9): 692~694

- 2 Khay Ming Tan, Chia Meng Tay, Swee Chuan Tjin et al.. High relative humidity measurements using gelatin coated long-period grating sensors [J]. Sensor. Actuat. B-chem, 2005, 110(2): 335~341
- 3 G. Laffont, P. Ferdinand. Tilted short-period fibre-Bragggrating induced coupling to cladding modes for accurate refractometry[J]. *Meas. Sci. Technol*, 2001, **12**(7): 765~770
- 4 Sui Sengfang, Xiao Caide, Yang Jun. Surface Plasmon Resonance Biosensors [M]. Shanghai: Shanghai Science and technology Press, 2008. 45~83 隋森芳,肖才德,杨 军. 表面等离子体激元共振生物传感器
- [M]. 上海:上海科学技术出版社. 2008. 45~83 5 W. S. Mohammed, P. W. E. Smith, X. Gu. All-fiber
- multimode interference bandpass filter[J]. *Opt. Lett.*, 2006, **31**(17): 2547~2549
- 6 Qian Wang, Gerald Farrell, Wei Yan. Investigation on singlemode-multimode-single-mode fiber structure [J]. J. Lightwave Technol., 2008, 26(5): 512~519
- 7 E. Li, X. Wang, C. Zhang. Fiber-optic temperature sensor based on interference of selective higher-order modes[J]. Appl. Phys. Lett., 2006, 89(9): 091119
- 8 Zhang Yan, Zhang Jianzhong, Liu Zhihai *et al.*. Multimode fiber based temperature sensor with the capability of wavelength encoding[J]. *Acta Optica Sinica*, 2009, **29**(2): 327~330 张 滟,张建中,刘志海 等. 具有波长标定功能的多模光纤温度 传感器[J]. 光学学报, 2009, **29**(2): 327~330
- 9 Qian Wang, Gerald Farrell. Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing[C]. SPIE, 2006, 6189: 61891N
- 10 Wang Honghai, Tong Weijun. Effect of periodic scrambling on the transmitting characteristic of multimode fibers[J]. Chinese J. Lasers, 2004, 31(2): 177~180

汪洪海,童维军.周期性扰动对多模光纤传输性能的影响[J].中 国激光,2004,**31**(2):177~180